De Novo KCNB1 Mutations in Epileptic Encephalopathy

Ali Torkamani, PhD,1 Kevin Bersell, MA,2 Benjamin S. Jorge, BA,3 Robert L. Bjork, Jr, MD,4,5 Jennifer R. Friedman, MD,6 Cinnamon S. Bloss, PhD,1 Julie Cohen, MS,7 Siddharth Gupta, MD,7,8 Sakkubai Naidu, MD,7,8 Carlos G. Vanoye, PhD,9,10 Alfred L. George, Jr, MD,2,9,10 and Jennifer A. Kearney, PhD9,10

Objective: Numerous studies have demonstrated increased load of de novo copy number variants or single nucleotide variants in individuals with neurodevelopmental disorders, including epileptic encephalopathies, intellectual disability, and autism.

Methods: We searched for de novo mutations in a family quartet with a sporadic case of epileptic encephalopathy with no known etiology to determine the underlying cause using high-coverage whole exome sequencing (WES) and lower-coverage whole genome sequencing. Mutations in additional patients were identified by WES. The effect of mutations on protein function was assessed in a heterologous expression system.

Results: We identified a de novo missense mutation in KCNB1 that encodes the Kv2.1 voltage-gated potassium channel. Functional studies demonstrated a deleterious effect of the mutation on Kv2.1 function leading to a loss of ion selectivity and gain of a depolarizing inward cation conductance. Subsequently, we identified 2 additional patients with epileptic encephalopathy and de novo KCNB1 missense mutations that cause a similar pattern of Kv2.1 dysfunction.

Interpretation: Our genetic and functional evidence demonstrate that KCNB1 mutation can result in early onset epileptic encephalopathy. This expands the locus heterogeneity associated with epileptic encephalopathies and suggests that clinical WES may be useful for diagnosis of epileptic encephalopathies of unknown etiology.

Epileptic encephalopathies are a heterogeneous group of severe childhood onset epilepsies characterized by refractory seizures, neurodevelopmental impairment, and poor prognosis.1 The developmental trajectory is normal prior to seizure onset, after which cognitive and motor delays become apparent. Ongoing epileptiform activity adversely affects development and contributes to functional decline. Therefore, early diagnosis and intervention may improve long-term outcomes.2-4

Recently, there has been significant progress in identifying genes responsible for epileptic encephalopathies, and de novo mutations have been reported in approximately a dozen genes, including SCN1A, SCN2A, SCN8A, KCNQ2, HCN1, GABRA1, GABRB3, STXBP1, CDKL5, CHD2, SYNGAP1, and ALG13.5-7 The majority of mutations reported are in genes encoding voltage-gated ion channels, neurotransmitter receptors, and synaptic proteins. There is significant phenotype
heterogeneity, with mutations in the same gene resulting in different clinical presentations, as well as locus heterogeneity, with mutations in different genes resulting in the same syndrome. Furthermore, epileptic encephalopathy genes have substantial overlap with genes responsible for other neurodevelopmental disorders, including autism and intellectual disability.10 - 12

Due to the considerable phenotype and locus heterogeneity, it is difficult to predict appropriate candidate genes for testing in a particular patient. Therefore, hypothesis-free approaches such as whole exome sequencing (WES) or whole genome sequencing (WGS) may be useful for uncovering causative variations in epileptic encephalopathies of unknown etiology. Thus, we aimed to identify the underlying genetic cause of epileptic encephalopathy in the proband by WES and WGS of a family quartet.

Subjects and Methods
Study Subjects
Study participants included ID9, parents ID9F and ID9M, and an unaffected sister ID9S. Adults provided written informed consent, with additional assent by ID9 and ID9S, under a protocol approved by the Scripps institutional review board. Consent for release of medical information for individual 2 was obtained from the parents. Clinical details are described below and summarized in Table 1.

Individual ID9 is a 9-year-old female with epileptic encephalopathy, hypotonia, developmental delays, and intermittent agitation. Pre- and perinatal histories were unremarkable, although hypotonia and excessive somnolence were noted early. Motor milestones were delayed, with sitting at 9 months, walking at 20 months, and persistent clumsiness. Language acquisition was delayed, with regression at age 18 months. Motor, language, and behavior have fluctuated, but overall there has been forward developmental progress. Onset of generalized tonic-clonic seizures (GTCS) was at 4.75 years of age, although behavioral manifestations likely representing other seizure types were present earlier. Multiple seizure semiologies were reported, including rare GTCS, head drops, and more common facial twitching with drooling, eye fluttering, gagging, vomiting, and stiffening. Rare GTCS are controlled with levetiracetam and clonazepam, but other seizure types have been poorly controlled with multiple therapies that were ineffective or limited by side effects (see Table 1). In addition, the patient experiences summation-responsive migrainous episodes consisting of headache, abdominal discomfort, photophobia, and lethargy.

Brain magnetic resonance imaging (MRI) showed subtle asymmetric volume loss in left hippocampus. Recent 7-day video electroencephalographic (EEG) monitoring revealed mild diffuse slowing and abundant bitemporal multifocal epileptiform discharges more prominent in right temporal and midparietal regions. Electroclonic seizures began in the left hemisphere, with 2 in centroparietal areas and 1 without clear localization. Magnetoencephalography showed frequent epileptiform spikes during sleep (648 spikes observed over 50 minutes), with frequent trains of spikes. Source modeling showed epileptiform spike activity arising from bilateral posterior perisylvian regions. The first cluster of spikes (~55%) originated from the anterior-inferior aspect of the left parietal lobe, extending to the left superior temporal gyrus. The second cluster of spikes (~45%) originated from the right temporal-parietal junction. No propagations were observed.

Muscle biopsy showed type 1 fiber predominance with mild generalized hypertrophy. There was slight elevation of plasma guanidinoacetic acid at 2.5µM (normal range: 0.3-2.1µM) but not in the range typically associated with disease. There was mild elevation of cerebrospinal fluid (CSF) pyruvate (147µM, normal range: 0-75µM) with normal lactate (2.06mM, normal range: 0.5-2.2mM). CSF 5-methyltetrahydrofolate was mildly reduced at 360µM (normal range: 40-128µM). Folate acid therapy has had unclear impact. Extensive additional workup was normal and included: karyotype, fragile X and Angelman syndrome testing, comparative genome hybridization oligo-single nucleotide polymorphism array, mitochondrial DNA Southern blot and mitochondrial DNA sequencing, plasma acylcarnitine, creatine phosphokinase, uric acid, biocinidase, ammonia, vitamin B12, folate, homocysteine, folate receptor antibodies, lymphocyte pyruvate dehydrogenase activity, urine organic acids, urine creatine and guanidinoacetic acid, CSF glucose, protein, amino acids, neurotransmitter metabolite levels and precursors, muscle carnitine, coenzyme Q10, and electron transport chain complex analysis.

Individual 2 presented as a 2-year, 10-month-old male with poor seizure control, developmental delay, absent speech, stereotyped handwringing movements, and progressive inturning of feet requiring orthotic support. Prenatal and perinatal histories were normal. Development plateaued at 6 months and seizures began at 8 months of age, with hypsarrhythmic EEG, for which he was treated with adrenocorticotropic hormone. Although seizures were resistant to conventional treatment, a gluten/casein/sugar/starclrfree diet begun at 2.5 years of age resulted in seizure reduction to 3/day despite marked spike activity demonstrable on EEG. At 4 years of age, seizures worsened and L-carnitine was added with subsequent amelioration. At 5 years of age, EEG was persistently abnormal, with epileptiform discharges of multifocal origin including bursts of diffuse polyspikes, diffuse polyspike-wave, right temporal spike and wave, left occipital spikes, and diffuse polyspike bursts lasting up to 4 minutes. Brain MRI studies at 9 months did not show structural, neuronal migration, or white matter abnormalities. He began walking at 2.5 years, and is presently interactive socially, although nonverbal. Extensive additional workup was normal. Genetic testing for mutations associated with SCN1A, MECP2, CDKL5, FOXG1, ARX, and fragile X, Pitt-Hopkins, and Angelman syndromes were negative. Tests for plasma and CSF amino acid concentrations, urine organic acid levels, CSF neurotransmitter levels, lysosomal enzymes, very long chain fatty acids, neuronal ceroid lipofuscinosis 1 and 2, urine...
<table>
<thead>
<tr>
<th>Individual</th>
<th>Current Age, yr</th>
<th>Sex</th>
<th>Seizure Types</th>
<th>Developmental Delay</th>
<th>Brain MRI</th>
<th>EEG</th>
<th>Other</th>
<th>Family History of Epilepsy</th>
<th>Presumed Causal Variant</th>
<th>Amino Acid Change</th>
<th>Predicted Consequence</th>
<th>Consequence (score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID9</td>
<td>9/F</td>
<td>4</td>
<td>Tonic–clonic, tonic; atonic; focal</td>
<td>Yes, motor and language</td>
<td>Subtle volume loss in left hippocampus</td>
<td>Mild diffuse slowing and abundant bilaterally multifocal epileptiform discharges</td>
<td>Hypotonia, strabismus, migraine;</td>
<td>No</td>
<td>Chr20: 47991056, G/T</td>
<td>S347R</td>
<td>Deleterious</td>
<td>[-4.996], damaging [0.003], probably damaging [0.995]</td>
</tr>
<tr>
<td>2</td>
<td>7/M</td>
<td>8 months</td>
<td>Tonic–clonic; atonic; focal; infundibular spasms</td>
<td>Yes, motor and language</td>
<td>Normal</td>
<td>Hypsarrhythmia, diffuse polyspikes, diffuse polyspike-wave, right temporal spike and wave, left occipital spikes, and series of bursts of diffuse polyspikes</td>
<td>Hypotonia, stereotypy, tremor, nonverbal, stereotypy, handwringing movements, in-turning of foot</td>
<td>No</td>
<td>Chr20: 47990976, C/T</td>
<td>G379R</td>
<td>Deleterious</td>
<td>[-7.926], damaging [0.006], probably damaging [1.000]</td>
</tr>
<tr>
<td>3, Corneil</td>
<td>5/F</td>
<td>0 years</td>
<td>Tonic–clonic; atonic; focal dyscognitive atypical absence; infundibular spasms</td>
<td>Unknown, unspecified</td>
<td>Normal</td>
<td>Unspecified</td>
<td>Cerebral palsy</td>
<td>Yes, absence epilepsy in great uncle</td>
<td>Chr20: 47990976, G/A</td>
<td>T374R</td>
<td>Deleterious</td>
<td>[-5.945], damaging [0.000], probably damaging [0.999]</td>
</tr>
</tbody>
</table>

ACTH = adrenocorticotropic hormone, EEG = electroencephalogram; F = female; M = male; MRI = magnetic resonance imaging.
TABLE 2. Whole Exome and Whole Genome Sequencing Coverage

<table>
<thead>
<tr>
<th>Sample</th>
<th>Whole Exome Sequencing</th>
<th>Whole Genome Sequencing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coverage, Mean</td>
<td>Target Exome with at Least 10 Reads, %</td>
</tr>
<tr>
<td>ID9, proband</td>
<td>109</td>
<td>94.5</td>
</tr>
<tr>
<td>ID9F, father</td>
<td>109</td>
<td>94.6</td>
</tr>
<tr>
<td>ID9M, mother</td>
<td>124</td>
<td>94.9</td>
</tr>
<tr>
<td>ID9M, sister</td>
<td>97</td>
<td>94.2</td>
</tr>
</tbody>
</table>

sulfocysteine, congenital disorders of glycosylation, and oligoarray were all normal. Clinical WES was performed by GeneDx, and reported variants were confirmed by Sanger sequencing.

Individual 3 (Coriell ND27062) was ascertained by the Epilepsy Phenome/Genome Project as part of a patient cohort with infantile spasms and/or Lennox–Gastaut syndrome. Seizure onset occurred during the first year of life, and seizure types have included tonic–clonic, atypical absence, atonic, infantile spasms, and focal dyscognitive (see Table 1). EEG findings were unspecified; imaging studies were reported as normal.

Whole Exome, Whole Genome Sequencing, Variant Calling, and Filtration

Genomic DNA was extracted from blood using the QiaAmp system (Qiagen, Valencia, CA). Enriched exome libraries were prepared using the SureSelect XT enrichment system (Agilent, Santa Clara, CA). WES was performed on an Illumina (San Diego, CA) HiSeq2500 instrument with indexed, 100 base pair (bp), paired-end sequencing. Reads were mapped to the hg19 reference genome using Burrows–Wheeler transform; variant calling and quality filtration were performed using Genome Analysis Toolkit best practices variant quality score recalibration. Mean coverage of 97- to 124-fold was achieved for each subject with 94 to 95% of the target exome covered by >10 reads (Table 2). Libraries for low-pass WGS were prepared using the NEBNext DNA Library Prep System (New England Biolabs, Ipswich, MA). WGS was performed on an Illumina HiSeq2500 with 100-bp indexed, paired-end sequencing. Mean coverage of 4- to 7-fold was achieved for each subject with ~64.3% of the genome covered by >5 reads (see Table 2). Copy number variants (CNVs) were identified by CNVNator.

Variant annotation was performed using SG-ADVISER (Scripps Genome Annotation and Distributed Variant Interpretation Server; http://genomics.scripps.edu/ADVISER/) as previously described. A series of filters were applied to derive a set of candidate disease-causing variants (Table 3): (1) population-based filtration removed variants present at >1% allele frequency in the HapMap, 1000 Genomes, National Heart, Lung, and Blood Institute Exome Sequencing Project (http://evs.gs.washington.edu/EVS/), or Scripps Wlderly populations (individuals older than 80 years with no common chronic conditions sequenced on the Complete Genomics platform); (2) annotation-based filtration removed variants in segmental duplication regions that are prone to produce false-positive variant calls due to mapping errors; (3) functional impact-based filtration retained only variants that are nonsynonymous, frameshift, nonsense, or affect canonical splice-site donor/acceptor sites, and (4) inheritance-based filters removed variants not present in the trio in a manner consistent with affectedness status. Following filtering, retained variants were confirmed by Sanger sequencing.

Locus-Specific Mutation Rate Estimate

The KCNB1 locus-specific mutation rate was determined as described. Human and chimpanzee alignments of the protein coding portion of exons and intronic essential splice sites were considered. The KCNB1 mutation rate per site is $2.71 	imes 10^{-3}$ differences per bp of aligned sequence. Assuming a divergence time of 12 million years between chimpanzee and human, a
25-year average generation time, the \textit{KCNB1} locus-specific mutation rate per site per generation is 5.65×10^{-7}. The probability of observing de novo mutation events was estimated using the Poisson distribution:

$$P(X; \mu) = \frac{e^{-\mu} \mu^X}{X!}$$

where X is the number of de novo events observed and μ is the average number of de novo events based on the locus-specific mutation rate.

Plasmids and Cell Transfection

Mutations were introduced into full-length human \(\text{K}v_{2.1}\) cDNA engineered in plasmid pIRES2-Ds-Red-MST by QuickChange mutagenesis (Agilent). Wild-type human \(\text{K}v_{2.1}\) cDNA was subcloned into the pIRES2-smGFP expression vector. Expression of wild-type and mutant \(\text{K}v_{2.1}\) in CHO-K1 cells was achieved by transient transfection using FUGENE-6 (Roche, Basel, Switzerland) and 0.5\(\mu\)g of total cDNA (1:1 mass ratio). Expression of wild-type alone was achieved by transfection with pIRES2-smGFP-WT-\(\text{K}v_{2.1}\) plus empty pIRES2-Ds-Red-MST, whereas expression of mutant alone was performed with pIRES2-Ds-Red-MST-mutant-\(\text{K}v_{2.1}\) and empty pIRES2-smGFP. Coexpression of mutant and wild-type was achieved by cotransfection with pIRES2-smGFP-WT-\(\text{K}v_{2.1}\) and pIRES2-Ds-Red-MST-mutant-\(\text{K}v_{2.1}\) or pIRES2-Ds-Red-MST-WT-\(\text{K}v_{2.1}\). Following transfection, cells were incubated for 48 hours before use in experiments.

Cell Surface Biotinylation

Proteins on the surface of CHO-K1 cells transfected with wild-type and/or mutant \(\text{K}v_{2.1}\) were labeled with cell membrane-impermeable Sulfo-NHS-Biotin (Thermo Scientific, Waltham, MA). Following quenching with 100mM glycine, cells were lysed and centrifuged. Supernatant was collected and an aliquot was retained as the total protein fraction. Biotinylated surface proteins (100\(\mu\)g per sample) were recovered from the remaining supernatant by incubation with streptavidin-agarose beads (Thermo Scientific) and eluted in Laemmli sample buffer. Total (1\(\mu\)g per lane) and surface fractions were analyzed by Western blotting using mouse anti-\(\text{K}v_{2.1}\) (1:500; NeuroMab, Davis, CA; clone K89/34), mouse anti-transferrin receptor (1:500; Jackson ImmunoResearch, West Grove, PA) and goat anti-mouse IgG (1:50,000, Jackson ImmunoResearch) secondary antibodies. Blots were probed for each protein in succession, stripping in between with Restore Western Blot Stripping Buffer (Pierce Biotechnology, Rockford, IL). Western blot analysis was performed in triplicate on samples from 3 independent transfections. The order of anti-\(\text{K}v_{2.1}\) and anti-transferrin receptor antibodies was alternated, with transferrin receptor probed first in 2 of 3 experiments. Selectivity of biotin labeling for cell surface was confirmed by probing with calnexin following detection of \(\text{K}v_{2.1}\) and transferrin receptor. Calnexin signal was consistently present in total protein lanes and absent in surface fraction lanes. Densitometry was performed using NIH ImageJ software. To control for protein loading, \(\text{K}v_{2.1}\) bands were normalized to the corresponding transferrin receptor band. For each genotype, the normalized values were then expressed as a ratio of surface to total expression. Normalized total, surface, and surface:total ratios were compared between genotypes using 1-way analysis of variance.

Electrophysiology

Whole cell patch clamp recordings were performed as previously described, except that recording solutions were altered to achieve appropriate voltage control. The external solution contained (in millimolars): 132 XCl (where X is Na\(^{+}\) except when molar substitution has been made for K\(^{+}\), Rb\(^{+}\), or N-methyl-D-glucamine [NMDG\(^{+}\)], 4.8 KCl, 1.2 MgCl\(_2\), 2 CaCl\(_2\), 10 glucose, and 10 HEPES, pH 7.4. The internal solution contained (in millimolars): 20 K-aspartate, 90 NMDG-Cl, 1 MgCl\(_2\), 1 CaCl\(_2\), 11 ethylenglycoltetraacetic acid (EGTA), 10 HEPES, and 5 K\(_2\)ATP, pH 7.3. When cells expressing mutant channels alone or coexpressed with wild-type \(\text{K}v_{2.1}\) (\(\text{K}v_{2.1}\)-WT) were held at −80mV, they exhibited large currents that prevented adequate voltage control. Therefore, a holding potential of −30mV was used for experiments. Whole cell currents were measured from −80 to +60 mV (in 10mV, 500-millisecond-long steps) from a holding potential of −30mV followed by a 500-millisecond step to 0mV (tail currents). Voltage dependence of activation was evaluated from tail currents measured 10 milliseconds after stepping to 0mV from −40mV to +30mV and fit to the Boltzmann equation. Kinetic analysis of activation rate was performed by exponential fit of the first 50 milliseconds of current induced after a voltage step from the holding potential.

For cation selectivity experiments, recording solutions were altered as follows. Sucrose dilution was performed by adding 300mM sucrose solution 10:1 (vol/vol) to the external solution described above. For determining permeability ratios, the internal solution was modified to contain (in millimolars): 110 K-aspartate, 1 MgCl\(_2\), 1 CaCl\(_2\), 11 EGTA, 10 HEPES, and 5 K\(_2\)ATP, pH 7.3, and equimolar replacement of extracellular sodium with the monovalent cations K\(^{+}\), Rb\(^{+}\), and NMDG\(^{+}\). The permeability ratio (\(P_X/P_{Na}\)) was calculated from measured reversal potentials (\(E_{rev}\)) according to the following equation:\(^{25}\)

$$E_{rev} = (RT/F) \ln (P_X[X^+]_{o}/P_{Na}[Na^+]),$$

where \(R\) is the gas constant, \(T\) is absolute temperature, \(F\) is Faraday's constant, \(X^+\) is the monovalent cation in the extracellular solution, and \(P_X\) is permeability of the \(X^+\) cation.

Data for each experimental condition were collected from ≥3 transient transfections, and analyzed and plotted using Clampfit (Molecular Devices, Sunnyvale, CA) and Prism 5 (GraphPad Software, La Jolla, CA). Currents were normalized for membrane capacitance and shown as mean ± standard error of the mean, and number of cells used for each experimental condition is listed in Table 4. Statistical significance was
determined using unpaired Student t test (GraphPad). Probability values are provided in the figures or figure legends.

Results

We employed WES (~100X coverage) and WGS (~5X coverage) of the proband (ID9), unaffected father (ID9F), unaffected mother (ID9M), and unaffected sister (ID9S) to identify the molecular cause of an epileptic encephalopathy. Filtering of WES variants was done under the assumption that disease in ID9 was the result of a heterozygous de novo mutation, but we also considered simple and compound recessive models. Variants discovered by WES were processed through a series of filters based on population, variant annotation, functional impact, and inheritance to identify a set of candidate disease-causing variants (see Table 3). Sequence coverage and detailed variant data are presented in Table 2 and the Supplementary Table. CNVs were also interrogated by WGS; however, no CNVs consistent with disease segregation were identified. This process identified de novo missense variants in 2 candidate genes, KCNBI and MLST8 (Table 5). Under other genetic models, we identified a homozygous missense variant in HRNBP3 and compound heterozygous variants in NLRP1 and BAHCCI. Of all the identified variants, the KCNBI variant was deemed the most likely candidate based on the de novo inheritance pattern, the function of KCNBI and its relationship to other epilepsy genes, and the predicted deleterious consequence on protein function by multiple algorithms. KCNBI encodes the alpha subunit of the Kv2.1 voltage-gated potassium channel, a delayed rectifier
FIGURE 1: K_2.1 mutations identified in 3 individuals with epileptic encephalopathy. (A) Evolutionary conservation of K_2.1. Multiple alignment of K_2.1 species orthologs (Clustal Omega) is shown. Mutated amino acids are shaded, and functional subdomains of the pore region are indicated. (B) Location of mutations mapped onto the crystal structure of a K_2.1/K_1.2 chimera (PDB 29R9). A channel tetramer is shown from the extracellular side. S347 (green) lies at the interface between the voltage sensor (blue) and pore (white) domains. T374 (teal) lies adjacent to the selectivity filter, whereas G379 (red) lies in the selectivity filter. (C) Mutant K_2.1 proteins are expressed and trafficked to the cell surface. Cell surface expression was measured using cell surface biotinylation of CHO-K1 cells transfected with wild-type (WT) or mutant K_2.1. Total and surface fractions of K_2.1 were detected with anti-K_2.1 antibody. Endogenous transferrin receptor levels were measured as a loading control. The blot was probed first with anti-transferrin receptor, stripped, and then reprobed with anti-K_2.1.

potassium channel that is an important regulator of neuronal excitability. The S347R variant is located in the pore domain that is necessary for ion selectivity and gating (Fig 1).

We identified 2 additional unrelated patients with epileptic encephalopathy and de novo missense variants in KCNBI discovered by WES. Individual 2 presented with a sporadic epileptic encephalopathy of unknown cause (see Table 1). After a series of negative genetic and metabolic tests, he was referred for clinical WES. From that analysis it was determined that he had a single de novo missense variant in KCNBI. The variant G379R, located in the selectivity filter of K_2.1, was predicted to be deleterious by functional impact algorithms (see Fig 1, Table 1). Additional inherited variants included a heterozygous splice site mutation in the NPC2 gene (IVS4+1 G>A) inherited from his unaffected father and a variant of unknown significance in GRIN2A (A1276G) inherited from his unaffected mother. Neither of these transmitted variants was thought to be causative for the principal phenotypes of individual 2, although they may contribute by modifying overall expression of the clinical phenotype. Inheritance of Nieman Pick disease type 2C (NPC2) is generally recessive, and the clinical phenotype of individual 2 was not consistent with NPC type 2. The GRIN2A A1276G variant is a known single nucleotide variant that was inherited from the unaffected mother and exists in the general population (0.1% minor allele frequency in European Americans). A1276G is a
conservative substitution in an alternatively spliced portion of the GRIN2A gene at a position that does not show a high degree of evolutionary conservation and was predicted to be benign by multiple functional impact algorithms (Provean: neutral [-0.78]; SIFT: tolerated [0.284]; Polyphen2: benign [0.376]).

Individual 3 was recently reported as part of an epileptic encephalopathy exome sequencing study by the Epi4K consortium. She presented with early onset epileptic encephalopathy and cerebral palsy (see Table 1). A de novo missense variant in KCNBI was reported for individual 3, with no additional de novo variants reported. The variant T374I is located in the pore domain of Kv2.1 and was predicted to be deleterious by functional impact algorithms (see Fig 1, Table 1).

Given the locus-specific mutation rate of KCNBI (5.65 × 10⁻⁵ mutation rate/base/generation), the probability of identifying 3 independent mutations is low (p < 1.1 × 10⁻⁵), providing statistical evidence that these variants may be pathogenic. The altered residues show a very high degree of evolutionary conservation (see Fig 1A), with T374 and G379 being invariant through the ancestral KcsA bacterial potassium channel. Furthermore, all 3 KCNBI variants are located in the functionally important pore domain of the Kv2.1 channel protein. Serine 347 is located in the prepore transmembrane segment, and threonine 374 is located in the pore helix. Glycine 379 is part of the critical GYG motif that defines the potassium selectivity filter (see Fig 1A, B).

Effects of the KCNBI variants on Kv2.1 channel function were evaluated following transient expression in CHO-K1 cells. Expression of each mutant in CHO-K1 cells resulted in total and cell surface expression similar to the wild-type channel, with no significant genotype-dependent differences in total (F₃,₈ = 1.767, p = 0.213), surface (F₃,₈ = 0.017, p = 0.997), and surface:total (F₃,₈ = 0.266, p = 0.848) expression of Kv2.1. This indicates that the mutations do not interfere with protein expression or trafficking to the cell surface (see Fig 1C). Expression of Kv2.1-WT resulted in large voltage-dependent potassium currents with characteristic outward rectification and late inactivation (Fig 2B, C). In contrast, expression of each of the 3 mutants yielded small currents with linear current-voltage relationships. These aberrant currents were blocked by gadolinium (Gd³⁺), strongly suggesting that the currents are pore-mediated (Fig 3). Based upon the external and internal K⁺ concentrations used in these experiments, the theoretical reversal potential (E₉₀) for K⁺-selective currents is -47mV. Expression of the mutant channels produced currents with depolarized E₉₀ (S347R: -14.0 ± 4.5mV; T374I: -16.5 ± 5.5mV), indicating that the mutations affect ion selectivity. To test ion selectivity, the external solution was diluted 1:10 with 300mM sucrose. Under these conditions, a depolarizing shift in E₉₀ would indicate anion selectivity, whereas a hyperpolarizing shift would indicate cation selectivity. Dilution of the extracellular solution produced a hyperpolarizing shift in E₉₀ confirming the current conducted was cation-selective (Fig 4). Changes in cation selectivity were determined by measuring changes in E₉₀ following molar replacement of extracellular sodium with monovalent cations. All 3 mutants exhibited loss of K⁺ selectivity, with K⁺/Na⁺ permeability ratios of 0.9 compared to the reported 14:1 ratio for Kv2.1-WT.

To investigate the effects of the mutant channels in a heterozygous background, we coexpressed each mutant with Kv2.1-WT channel and compared to the wild-type channel expressed alone. Coexpression of Kv2.1-WT with T374I, S347R, or G379R resulted in reduced current measured at test potentials ranging from 0 to +60mV (see Fig 2C), depolarizing shifts in the voltage-dependence of steady-state activation (see Figs 2D and 5, Table 4), and greater time constants of activation (τ) measured from +30 to +60mV test potentials (see Figs 2E and 5). The observed changes in kinetic parameters suggest that the mutant and wild-type subunits can form heterotetrameric channels.

Discussion

Co-occurrence of de novo variants in KCNBI in 3 independent patients with overlapping clinical phenotypes that include epileptic encephalopathy with associated cognitive and motor dysfunction provides strong genetic evidence that the KCNBI variants are likely pathogenic. Further evidence for a pathogenic effect of the KCNBI mutations comes from functional studies of mutant Kv2.1 channels. All 3 mutations, located within the pore domain of Kv2.1, resulted in channels with similar dysfunctional features.

Previous studies demonstrated that mutations in the pore region can result in altered ion selectivity. Consistent with this, each Kv2.1 mutant exhibited voltage-independent, nonselective cation currents. When coexpressed with wild-type channels, all Kv2.1 mutants induced depolarizing shifts in the voltage dependence of activation and reduced current density at more depolarized voltages. Furthermore, coexpression of the Kv2.1 mutants with wild-type channels resulted in inward currents in the voltage range where Kv2.1 channels are normally closed, as evidenced by large inward currents.
FIGURE 2: Functional consequence of Kv2.1 mutations. (A) CHO-K1 cells were held at —30mV, and whole cell currents were recorded from —80 to +60mV in 10mV steps for 500 milliseconds followed by a 500-millisecond step to 0mV to record tail currents. (B) Average whole cell current traces recorded from nontransfected CHO-K1 cells and CHO-K1 cells transiently expressing wild-type (WT) or mutant (G379R, S347R, T3741) Kv2.1 channels, or coexpressing WT plus mutant channels. (C) Current density—voltage relationships measured from CHO-K1 cells expressing mutant or WT, or coexpressing WT and mutant Kv2.1 channels. Currents were normalized to cell capacitance (picofarads). WT plus mutant channels had significantly decreased current density at test potentials ranging from 0 to +60mV compared to WT alone (P<0.05). (D) Voltage dependence of steady-state activation. Tail currents were normalized to peak amplitude and fit with Boltzmann function. Biophysical parameters of voltage dependence are detailed in Table 4. (E) The time constant of activation was determined from exponential fit of individual current traces. *P < 0.05, **P < 0.005, ***P < 0.0001.

observed when using a holding potential of —80mV. These gain-of-function and dominant-negative functional defects are predicted to result in depolarized resting membrane potential and impaired membrane repolarization, with increased cellular excitability as a net consequence.
Kv2.1 is the main contributor to delayed rectifier potassium current in pyramidal neurons of the hippocampus and cortex.\(^{31-35}\) Delayed rectifier potassium current is critical for membrane repolarization under conditions of repetitive stimulation and acts to dampen high-frequency firing. Reduction of delayed rectifier potassium current by *Kcnb1* deletion in mice results in reduced thresholds to induced seizures, but not spontaneous seizures.\(^{36}\) This suggests that loss of Kv2.1 function predisposes neuronal networks to hyperactivity, resulting in a modest increase in seizure risk. In contrast, our results demonstrate that gain-of-function and dominant-negative effects result in epileptic encephalopathy. A similar phenomenon is observed with *KCNQ2* wherein heterozygous loss-of-function mutations result in benign familial neonatal seizures, whereas mutations with dominant-negative effects result in epileptic encephalopathy.\(^{37}\) This suggests that variable functional defects resulting from different mutations in the same gene contribute to the pleiotropic effects observed for genes associated with neurodevelopmental disorders.

In summary, our genetic and functional evidence identifies mutation of *KCNB1* as a cause of epileptic encephalopathy. This expands the considerable locus heterogeneity associated with epileptic encephalopathies.\(^{5,6}\)
FIGURE 5: Expanded view of whole cell current traces for evaluation of activation kinetics of wild-type (WT) Kv2.1 channel alone or coexpressed with mutant channels. Expanded view is shown of the first 50 milliseconds of whole cell currents following voltage change from −80mV to +60mV and normalized to peak current recorded from CHO-K1 cells transiently expressing (A) Kv2.1-WT or coexpressing WT and mutant Kv2.1 channels (B) S347R, (C) G379R, and (D) T374I.

suggesting that clinical exome sequencing may be useful for molecular diagnosis. Rapid genetic diagnosis is beneficial for appropriate disease management and may improve long-term outcomes in epileptic encephalopathies.1–4

Acknowledgment
This work was supported by Scripps Genomic Medicine, an NIH National Center for Advancing Translational Sciences Clinical and Translational Science Award (5 ULI RR025774) to Scripps Translational Science Institute, as well as funding from the Shaffer Family Foundation and the Anne and Henry Zarrow Foundation. Further support is from NIH/NHGRI U01 HG006476 (A.T.), NIH/NINDS R01 NS053792 (J.A.K.), NIH/NINDS R01 NS032387 (A.L.G.), and NIH/NINDS F31 NS083097 (B.S.J.).

We thank the patients and their families for their cooperation; S. E. Topol, G. Zhang, and J. Lee for technical contributions; and the members of our IDIOM (Idiopathic Disease of Man) review panel for their dedication and support: Drs K. Bethel, J. Diamant, S. Haaser, N. Hywonn, E. Kavalrichik, B. Patay, J. Sheard, R. Simon, and G. Williams.

Authorship
Experiments were conceived by A.T., C.S.B., J.A.K., and A.L.G. Patient phenotyping and review were performed by R.L.B., J.R.F., J.C., S.G., and S.N. Sequence data analysis and statistical interpretation were performed by A.T. and J.A.K. Functional evaluation of mutations was performed and analyzed by K.B., B.S.J., C.G.V., A.L.G., and J.A.K. The manuscript was written by A.T., A.L.G., and J.A.K., and reviewed by all authors. A.T., K.B., and B.S.J. contributed equally.

Potential Conflicts of Interest
References

